Isoflurane inhibits the tetrodotoxin-resistant voltage-gated sodium channel Nav1.8.
نویسندگان
چکیده
BACKGROUND Voltage-gated sodium channels (Nav) mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant (TTX-r) compared to other isoforms. Nav1.8 is highly expressed in dorsal root ganglion neurons and is functionally linked to nociception, but the sensitivity of TTX-r isoforms to inhaled anesthetics is unclear. METHODS The sensitivities of heterologously expressed rat TTX-r Nav1.8 and endogenous tetrodotoxin-sensitive (TTX-s) Nav to the prototypic inhaled anesthetic isoflurane were tested in mammalian ND7/23 cells using patch-clamp electrophysiology. RESULTS From a holding potential of -70 mV, isoflurane (0.53 +/- 0.06 mM, 1.8 minimum alveolar concentration at 24 degrees C) reduced normalized peak Na current (INa) of Nav1.8 to 0.55 +/- 0.03 and of endogenous TTX-s Nav to 0.56 +/- 0.06. Isoflurane minimally inhibited INa from a holding potential of -140 mV. Isoflurane did not affect voltage-dependence of activation, but it significantly shifted voltage-dependence of steady-state inactivation by -6 mV for Nav1.8 and by -7 mV for TTX-s Nav. IC50 values for inhibition of peak INa were 0.67 +/- 0.06 mM for Nav1.8 and 0.66 +/- 0.09 mM for TTX-s Nav; significant inhibition occurred at clinically relevant concentrations as low as 0.58 minimum alveolar concentration. Isoflurane produced use-dependent block of Nav1.8; at a stimulation frequency of 10 Hz, 0.56 +/- 0.08 mM isoflurane reduced INa to 0.64 +/- 0.01 versus 0.78 +/- 0.01 for control. CONCLUSION Isoflurane inhibited the tetrodotoxin-resistant isoform Nav1.8 with potency comparable to that for endogenous tetrodotoxin-sensitive Nav isoforms, indicating that sensitivity to inhaled anesthetics is conserved across diverse Nav family members. Block of Nav1.8 in dorsal root ganglion neurons could contribute to the effects of inhaled anesthetics on peripheral nociceptive mechanisms.
منابع مشابه
Effects of (−)-Gallocatechin-3-Gallate on Tetrodotoxin-Resistant Voltage-Gated Sodium Channels in Rat Dorsal Root Ganglion Neurons
The (-)-gallocatechin-3-gallate (GCG) concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav) mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and funct...
متن کاملRoles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia
BACKGROUND Tissue acidosis is effective in causing chronic muscle pain. However, how muscle nociceptors contribute to the transition from acute to chronic pain is largely unknown. RESULTS Here we showed that a single intramuscular acid injection induced a priming effect on muscle nociceptors of mice. The primed muscle nociceptors were plastic and permitted the development of long-lasting chro...
متن کاملInactivation properties of sodium channel Nav1.8 maintain action potential amplitude in small DRG neurons in the context of depolarization
BACKGROUND Small neurons of the dorsal root ganglion (DRG) express five of the nine known voltage-gated sodium channels. Each channel has unique biophysical characteristics which determine how it contributes to the generation of action potentials (AP). To better understand how AP amplitude is maintained in nociceptive DRG neurons and their centrally projecting axons, which are subjected to depo...
متن کاملSodium channel Nav1.8 immunoreactivity in painful human dental pulp
BACKGROUND The tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 (SNS1/PN3) is expressed by nociceptors and may play a role in pain states. METHODS Using specific antibodies for immunohistochemistry, we studied Nav1.8 immunoreactivity in human dental pulp in relation to the neuronal marker neurofilament. Human tooth pulp was extracted from teeth harvested from a total of twenty-two p...
متن کاملInvolvement of voltage-gated sodium channels blockade in the analgesic effects of orphenadrine.
Orphenadrine is a drug acting on multiple targets, including muscarinic, histaminic, and NMDA receptors. It is used in the treatment of Parkinson's disease and in musculoskeletal disorders. It is also used as an analgesic, although its mechanism of action is still unknown. Both physiological and pharmacological results have demonstrated a critical role for voltage-gated sodium channels in many ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Anesthesiology
دوره 111 3 شماره
صفحات -
تاریخ انتشار 2009